Tracy A. Heath

© @trayc7 http://phyloworks.org

Introduction to some important Bayesian concepts

Bayes Rule

likelilisod of due
data given He

$\operatorname{Pr}(D \mid \theta) \operatorname{Pr}(\theta)$

Bayesian Inference

Estimate the probability of a hypothesis (model) conditional on observed data

The probability represents a researcher's degree of belief

Bayes Rule (also called Bayes Theorem) specifies the conditional probability of the hypothesis given the data

Bayes Rule

the posterior probability of a discrete parameter δ conditional on the data D is

$\operatorname{Pr}(D \mid \delta) \operatorname{Pr}(\delta)$
 $\sum_{\delta} \operatorname{Pr}(D \mid \delta) \operatorname{Pr}(\delta)$

厄
the likelihood marginalized over all possible values of δ

Bayes Rule

the posterior probability of a discrete parameter θ conditional on the data D is

$f(\theta \mid D)=\frac{f(D \mid \theta) f(\theta)}{\int_{\theta} f(D \mid \theta) f(\theta)}$

the likelihood marginalized over all possible values of θ

Priors

Prior distributions are an important part of Bayesian statistics

The distribution of θ before any data are collected is the prior

The prior describes your uncertainty in the parameters of your model

Priors: Archery $H \longrightarrow$

Priors: Archery

In this example we want to assess an archer's accuracy at hitting the bullseye

To quantify this, we will measure the distance d from the center of the target
 (in centimeters) $*$ in this example, d is an absolute ralue

Priors: Archery

Priors: Archery

Priors: Archery

Midwest Phylogenetics Workshop 2019
(Based on slides by Paul Lewis https://molevol.mbl.edu/index.php/Paul_Lewis)

Priors: Archery

Priors: Archery

Priors: Archery

Each of these prior densities can be defined using a gamma distribution.

To specify a gamma prior, we must choose parameter values based on our prior belief
$d \sim \operatorname{Gamma}(\alpha, \beta)$

$$
f(d \mid \alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} d^{\alpha-1} e^{-\frac{d}{\beta}}
$$

Priors: Archery

Let's assume that I will consistently miss the target

This is a gamma distribution with a mean (m) of 60 and a variance (v) of 3
$d \sim \operatorname{Gamma}(\alpha, \beta)$

Priors: Archery

If we have prior knowledge of the mean and variance of the gamma distribution, we can compute the shape and rate parameters

$$
\begin{aligned}
& m=\frac{\alpha}{\beta}, \alpha=\frac{m^{2}}{v} \\
& v=\frac{\alpha}{\beta^{2}}, \beta=\frac{m}{v}
\end{aligned}
$$

$d \sim \operatorname{Gamma}(\alpha, \beta)$

Priors: Archery

$$
\begin{aligned}
& m=60, v=3 \\
& \alpha=\frac{60^{2}}{3}=1200 \\
& \beta=\frac{60}{3}=20
\end{aligned}
$$

$d \sim \operatorname{Gamma}(\alpha, \beta)$

Priors: Archery

Another way of expressing $\quad d \sim \operatorname{Gamma}(\alpha, \beta)$ this distribution is with a probabilistic graphical model

Priors: Archery

$d \sim \operatorname{Gamma}(\alpha, \beta)$

This shows that our observed datum ($d=$ a single observed shot) is conditionally dependent on the shape (α) and rate (β) of the gamma distribution

Priors: Archery

We can parameterize the model using the mean (m) and variance (v), where α and β are computed using m and v

We may have more intuition about the mean and variance than we do about the shape and rate.

Priors: Archery

Constant nodes represent a fixed value that is asserted or known

Deterministic nodes represent unknown random variable whose values are determined by other nodes

Stochastic nodes are random variables generated by the model. If we observe the value of a stochastic node, we fix it to that value

Priors: Archery

If we set m and v to values corresponding to our assumed model, then we can calculate the likelihood of any observed shot

$$
f(d \mid \alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} d^{\alpha-1} e^{-\frac{d}{\beta}}
$$

$$
f(d=39.76 \mid \alpha=1200, \beta=20)=7.89916 e-40
$$

Priors: Archery

What if we do not know m and v ?

We can use maximum likelihood or Bayesian methods to estimate their values

Maximum likelihood methods require us to find the values of m and v that maximize

$$
f(d \mid m, v)
$$

Bayesian methods use prior distributions to describe our uncertainty in m and v and estimate

$$
f(m, v \mid d)
$$

Priors: Archery

We must define prior distributions for m and v to account for uncertainty and estimate the posterior densities of those parameters

Priors: Archery

Now x and y are the parameters of the uniform prior on m

And a and b are the shoe and rate parameters of the gamma prior on v

Priors: Archery

Stochastic nodes that are not observed are random variables that are unknown and estimated

Priors: Archery

The values we choose for the parameters of these prior distributions should reflect our prior knowledge

If we observed a previous shot at 39.76 cm , the we can use this to parameterize our priors
 for analysis of future observations

Priors: Archery

$$
\begin{aligned}
& m \sim \operatorname{Uniform}(x, y) \\
& x=10 \\
& y=50 \\
& \mathbb{E}(m)=30 \\
& \\
& v \sim \operatorname{Gamma}(a, b) \\
& a=20 \\
& b=2 \\
& \mathbb{E}(v)=10
\end{aligned}
$$

Priors: Archery

Now that we have a defined model, how do we estimate the posterior probability density?

$$
\begin{aligned}
m & \sim \operatorname{Uniform}(x, y) \\
v & \sim \operatorname{Gamma}(a, b) \\
d & \sim \operatorname{Gamma}(\alpha, \beta)
\end{aligned}
$$

$$
f(m, v \mid d, a, b, x, y) \propto f\left(d \left\lvert\,, \alpha=\frac{m^{2}}{v}\right., \beta=\frac{m}{v}\right) f(m \mid x, y) f(v \mid a, b)
$$

Markov Chain Monte Carlo

An algorithm for approximating the posterior distribution

Metropolis, et al. 1953. Equations of state calculations by fast computing machines. J. Chem. Phys.
Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika.

Markov Chain Monte Carlo

More on MCMC from Paul Lewis and his lecture on Bayesian phylogenetics

Slides source: $h t t p s: / / m o l e v o l . m b l . e d u / i n d e x . p h p / P a u l _L e w i s ~$
Also see: $h t t p s: / / w w w . y o u t u b e . c o m / w a t c h ? v=4 P W \operatorname{lnNsfz} 90$

Markov chain Monte Carlo (MCMC)

For more complex problems, we might settle for a good approximation
to the posterior distribution

MCMC robot's rules

Uphill steps are always accepted

Actual rules (Metropolis algorithm)

Uphill steps are always accepted because R > I

Metropolis et al. 1953. Equation of state calculations by fast computing machines. J. Chem. Physics 2 I (6): 1087-1092.

Cancellation of marginal likelihood

When calculating the ratio (R) of posterior densities, the marginal probability of the data cancels.

$$
\frac{p\left(\theta^{*} \mid D\right)}{p(\theta \mid D)}=\frac{\frac{p\left(D \mid \theta^{*}\right) p\left(\theta^{*}\right)}{p(D)}}{\frac{p(D \mid \theta) p(\theta)}{p(D)}}=\frac{p\left(D \mid \theta^{*}\right) p\left(\theta^{*}\right)}{p(D \mid \theta) p(\theta)}
$$

Posterior odds

Apply Bayes' rule to
both top and bottom

Likelihood ratio

Prior odds

Target vs. Proposal Distributions

Target vs. Proposal Distributions

Big waves in trace plot indicate robot is crawling around

Target vs. Proposal Distributions

"overly bold" proposal distribution

Metropolis-coupled Markov chain Monte Carlo (MCMCMC)

Sometimes the robot needs some help,

MCMCMC introduces helpers in the form of "heated chain" robots that can act as scouts.

Geyer, C.J. 1991. Markov chain Monte Carlo maximum likelihood for dependent data. Pages 156-163 in Computing Science and Statistics (E. Keramidas, ed.).

Heated chains act as scouts for the cold

 chain
Cold chain robot can easily make this jump because it is uphill

Hot chain robot can also

 make this jump with high probability because it is only slightly downhill

Markov Chain Monte Carlo

Learn more about MCMC!

REVIEW ARTICLE

DOI: 10.1038/s41559-017-0280-x

nature
 ecology \& evolution

A biologist's guide to Bayesian phylogenetic analysis

Fabrícia F. Nascimento ${ }^{1,4 \star}$, Mario dos Reis \odot^{2} and Ziheng Yang ${ }^{\left({ }^{3 \star}\right.}$
https://thednainus.wordpress.com/2017/03/03/ tutorial-bayesian-mcmc-phylogenetics-using-r/

Markov Chain Monte Carlo

Learn more about MCMC!
https://phylogeny.uconn.edu/mcmc-robot/

MCMCRobot, a helpful tool for learning MCMC by Paul Lewis

RevBayes Demo

https://github.com/phyloworks/revbayes-workshop2017/blob/master/archery-model/ archery-mcmc.ipynb

