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Introduction to some 
important Bayesian concepts
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Pr(θ ∣ D) = Pr(D ∣ θ) Pr(θ)
∑θ Pr(D ∣ θ) Pr(θ)
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Bayesian Inference
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Estimate the probability of a hypothesis (model) 
conditional on observed data

The probability represents a researcher’s degree 
of belief

Bayes Rule (also called Bayes Theorem) specifies 
the conditional probability of the hypothesis given 
the data



the likelihood marginalized over all 
possible values of # 

Bayes Rule
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Pr(δ ∣ D) = Pr(D ∣ δ) Pr(δ)
∑δ Pr(D ∣ δ) Pr(δ)

the posterior probability of a discrete parameter # 
conditional on the data D is 



the likelihood marginalized over all 
possible values of $

Bayes Rule
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f(θ ∣ D) = f(D ∣ θ)f(θ)
∫θ f(D ∣ θ)f(θ)

the posterior probability of a discrete parameter $ 
conditional on the data D is 



Priors
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Prior distributions are an important part of Bayesian 
statistics

The distribution of $ before any data are collected is the 
prior

f(θ)
The prior describes your uncertainty in the parameters of 
your model



Priors: Archery
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1 meter

(Based on slides by Paul Lewis https://molevol.mbl.edu/index.php/Paul_Lewis)
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In this example we want to 
assess an archer’s 
accuracy at hitting the 
bullseye

To quantify this, we will 
measure the distance d 
from the center of the target 
(in centimeters)

1  m

in this example d is an absolutevalue
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1  m

Consider your prior knowledge 
about my archery abilities and 
draw a curve representing your 
view of the chances of my arrow 
landing a distance d centimeters 
from the bullseye

When formalizing your prior 
belief, also consider what you 
know about d

(Based on slides by Paul Lewis https://molevol.mbl.edu/index.php/Paul_Lewis)

d (centimeters from bullseye)
0.0 60.040.020.0
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1  m

Most of you don’t know me and might 
not want to assume anything about my 
abilities…

(Based on slides by Paul Lewis https://molevol.mbl.edu/index.php/Paul_Lewis)

d (centimeters from bullseye)
0.0 60.040.020.0

x
x

diffuse X
vague 4
ok X

uninformative
X
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1  m

(Based on slides by Paul Lewis https://molevol.mbl.edu/index.php/Paul_Lewis)

Maybe some of you assume that I am a 
very talented archer…

d (centimeters from bullseye)
0.0 60.040.020.0

in
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1  m

(Based on slides by Paul Lewis https://molevol.mbl.edu/index.php/Paul_Lewis)

Maybe some of you think I might be a 
talented archer and there is something 
wrong with my bow…

d (centimeters from bullseye)
0.0 60.040.020.0

x
xxxxx

informative prior
but biased

il
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1  m

d (centimeters from bullseye)
0.0 60.040.020.0

(Based on slides by Paul Lewis https://molevol.mbl.edu/index.php/Paul_Lewis)

aliveprior
assuming

talent

g
inform

informative
prior

assuming

talent

biased

diffuse
prior

assuming
no
talent
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Each of these prior 
densities can be defined 
using a gamma 
distribution.

d ∼ Gamma(α, β)

0 10 20 30 40 50 60 70

distance in cm from target center (d)

f(d ∣ α, β) = 1
Γ(α)βα dα−1e− d

β

To specify a gamma prior, we 
must choose parameter values 
based on our prior belief
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0 10 20 30 40 50 60 70

distance in cm from target center (d)

Let’s assume that I will 
consistently miss the 
target

This is a gamma 
distribution with a mean 
(m) of 60 and a variance 
(v) of 3

mean = accuracy 

variance = precision

d ∼ Gamma(α, β)



Priors: Archery

Midwest Phylogenetics Workshop 2019 (Based on slides by Paul Lewis https://molevol.mbl.edu/index.php/Paul_Lewis)

0 10 20 30 40 50 60 70

distance in cm from target center (d)

If we have prior 
knowledge of the mean 
and variance of the 
gamma distribution, we 
can compute the shape 
and rate parameters

d ∼ Gamma(α, β)

m = α
β

, α = m2

v

v = α
β2 , β = m

v
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0 10 20 30 40 50 60 70

distance in cm from target center (d)

d ∼ Gamma(α, β)m = 60, v = 3

β = 60
3 = 20

α = 602

3 = 1200
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0 10 20 30 40 50 60 70

distance in cm from target center (d)

Another way of expressing 
this distribution is with a 
probabilistic graphical 
model

d ∼ Gamma(α, β)

d

α β

gamma

distribution
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This shows that our 
observed datum (d =  
a single observed 
shot) is conditionally 
dependent on the 
shape (⍺) and rate (β) 
of the gamma 
distribution

d ∼ Gamma(α, β)

d

α β

gamma

distribution
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We can parameterize 
the model using the 
mean (m) and 
variance (v), where ⍺ 
and β are computed 
using m and v

d

α β

gamma

distribution

m v

β =
m

v
α =

m
2

v

We may have more intuition about the mean and 
variance than we do about the shape and rate.



Priors: Archery

Midwest Phylogenetics Workshop 2019

This graphical model 
has 3 types of nodes

d

α β

gamma

distribution

m v

β =
m

v
α =

m
2

v

Constant nodes 
represent a fixed 
value that is asserted 
or known

Deterministic nodes 
represent unknown random 
variable whose values are 
determined by other nodes

Stochastic nodes are random 
variables generated by the model. 
If we observe the value of a 
stochastic node, we fix it to that 
value
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If we set m and v to 
values corresponding to 
our assumed model, 
then we can calculate 
the likelihood of any 
observed shot

d

α β

gamma

distribution

m v

β =
m

v
α =

m
2

v

f(d ∣ α, β) = 1
Γ(α)βα dα−1e− d

β

f(d = 39.76 ∣ α = 1200,β = 20) = 7.89916e − 40
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What if we do not know m and v?

We can use maximum likelihood or Bayesian 
methods to estimate their values

Priors: Archery

Maximum  likelihood 
methods require us to find 
the values of m and v that 
maximize 

f(d ∣ m, v)

Bayesian methods use prior 
distributions to describe our 
uncertainty in m and v and 
estimate

f(m, v ∣ d)
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Priors: Archery

We must define prior 
distributions for m and 
v to account for 
uncertainty and 
estimate the posterior 
densities of those 
parameters d

α β

gamma
distribution

m v

β =
m

v
α =

m
2

v

x y a b

uniform
distribution

gamma
distribution
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Priors: Archery

Now x and y are the 
parameters of the 
uniform prior on m

And a and b are the 
shoe and rate 
parameters of the 
gamma prior on v d

α β

gamma
distribution

m v

β =
m

v
α =

m
2

v

x y a b

uniform
distribution

gamma
distribution
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Priors: Archery

Stochastic nodes that are not 
observed are random variables 
that are unknown and 
estimated

d

α β

gamma
distribution

m v

β =
m

v
α =

m
2

v

x y a b

uniform
distribution

gamma
distribution
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Priors: Archery
The values we choose for 
the parameters of these 
prior distributions should 
reflect our prior 
knowledge

If we observed a previous 
shot at 39.76 cm, the we 
can use this to 
parameterize our priors 
for analysis of future 
observations

d

α β

gamma
distribution

m v

β =
m

v
α =

m
2

v

x y a b

uniform
distribution

gamma
distribution
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Priors: Archery

m ∼ Uniform(x, y)
x = 10
y = 50
((m) = 30

v ∼ Gamma(a, b)
a = 20
b = 2
((v) = 10

d

α β

gamma
distribution

m v

β =
m

v
α =

m
2

v

x y a b

uniform
distribution

gamma
distribution
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Priors: Archery

d

α β

gamma
distribution

m v

β =
m

v
α =

m
2

v

x y a b

uniform
distribution

gamma
distribution

m ∼ Uniform(x, y)
v ∼ Gamma(a, b)
d ∼ Gamma(α, β)

Now that we have a 
defined model, how do 
we estimate the 
posterior probability 
density?

f(m, v ∣ d, a, b, x, y) ∝ f(d ∣ , α = m2

v
, β = m

v
)f(m ∣ x, y)f(v ∣ a, b)
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Markov Chain Monte Carlo

Metropolis, et al. 1953. Equations of state calculations by fast computing machines. J. Chem. Phys.  

Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika. 

An algorithm for approximating the posterior distribution
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Markov Chain Monte Carlo

Slides source: https://molevol.mbl.edu/index.php/Paul_Lewis 

Also see: https://www.youtube.com/watch?v=4PWlnNsfz90 

More on MCMC from Paul Lewis and 
his lecture on Bayesian phylogenetics
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Markov chain Monte Carlo (MCMC)

For more complex problems, 
we might settle for a 

good approximation
prior

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

posterior

to the posterior distribution
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MCMC robot’s rules

Uphill steps are 
always accepted

Slightly downhill steps
are usually accepted

Drastic “off the cliff”
downhill steps are almost
never accepted

With these rules, it 
is easy to see why the

robot tends to stay near 
the tops of hills
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Actual rules (Metropolis algorithm)

Uphill steps are always 
accepted because R > 1

Slightly downhill steps are usually 
accepted because R is near 1

Drastic “off the cliff” downhill 
steps are almost never accepted 

because R is near 0

6

8

4

2

0

10

The robot 
takes a step if 
a  Uniform(0,1) 

random 
deviate ≤ R

Currently at 6.2 m
Proposed at 5.7 m
R = 5.7/6.2 =0.92

Currently at 1.0 m
Proposed at 2.3 m
R = 2.3/1.0 = 2.3

Currently at 6.2 m
Proposed at 0.2 m
R = 0.2/6.2 = 0.03

Metropolis et al. 1953. Equation of state calculations by fast 
computing machines. J. Chem. Physics 21(6):1087-1092.
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Cancellation of marginal likelihood

When calculating the ratio (R) of posterior densities, the marginal 
probability of the data cancels.

Posterior
odds

Likelihood
ratio

Prior
odds

Apply Bayes' rule to 
both top and bottom

p(�* |D)
p(� |D) =

p(D |�*) p(�*)
p(D)

p(D |�) p(�)
p(D)

= p(D |�*) p(�*)
p(D |�) p(�)
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Target vs. Proposal Distributions
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White noise appearance is a 
sign of good mixing

"good" proposal 
distribution

target trace plot

MCMC iteration

lo
g(

po
st

er
io

r)

Tracer (app for generating trace plots from MCMC output):
https://github.com/beast-dev/tracer/releases/tag/v1.7.1

distribution

The target is usually the posterior distribution

The proposal distribution 
is used by the robot to 
choose the next spot to 
step, and is separate from 
the target distribution.
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Target vs. Proposal Distributions

Big waves in trace plot indicate 
robot is crawling around

"baby steps" 
proposal 

distribution

target 
distribution

MCMC iteration

lo
g(

po
st

er
io

r)
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Target vs. Proposal Distributions

Plateaus in trace plot indicate 
robot is often stuck in one place

"overly bold" proposal distribution

target 
distribution

MCMC iteration

lo
g(

po
st

er
io

r)
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Metropolis-coupled Markov chain Monte Carlo 
(MCMCMC)

Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood for dependent data. Pages 156-163 in Computing 
Science and Statistics (E. Keramidas, ed.).

Sometimes the robot needs some help,

MCMCMC introduces helpers in the form of "heated 
chain" robots that can act as scouts.
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Heated chains act as scouts for the cold 
chain

cold

heated

Cold chain robot can 
easily make this jump 
because it is uphill

Hot chain robot can also 
make this jump with high 

probability because it is only 
slightly downhill
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Heated chains act as scouts for the cold 
chain

cold

heated

Swapping places means 
both robots can cross 
the valley, but this is 

more important for the 
cold chain because its 
valley is much deeper.
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Markov Chain Monte Carlo
Learn more about MCMC!

https://thednainus.wordpress.com/2017/03/03/
tutorial-bayesian-mcmc-phylogenetics-using-r/
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Markov Chain Monte Carlo
Learn more about MCMC!

 

MCMCRobot, a 
helpful tool for 
learning MCMC by 
Paul Lewis

https://phylogeny.uconn.edu/mcmc-robot/
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RevBayes Demo

 

https://github.com/phyloworks/revbayes-
workshop2017/blob/master/archery-model/

archery-mcmc.ipynb


